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Abstract. A kinetic equation is derived for the slowly varying, large-scale critical fluctua- 
tions (gross variables) in a smectic A liquid crystal below a smectic A to nematic phase 
transition point using Kawasaki’s formulation of the extended mode-coupling theory. Two 
kinds of variables, i.e. amplitude of the smectic A order parameter and a second-sound 
mode are chosen as gross variables. A time-correlation-function formalism applied to this 
kinetic equation yields no serious renormalisation of transport coefficients to indicate 
adequateness of the mean-field-type treatment to critical dynamics in the smectic A phase. 

1. Introduction 

Liquid crystals present a fascinating array of phase transitions associated with the 
orientational and spatial order of elongated organic molecules. Recently there has 
been considerable theoretical and experimental attention towards a smectic A-nema- 
tic transition. 

In a smectic A liquid crystalline phase, bar-like molecules coalesce into equidistant 
planes; centres of mass form a one-dimensional sinusoidal density wave in the direc- 
tion normal to the planes, while the centre-of-mass density in the plane is uniform as 
in a normal liquid. A nematic phase is characterised by a uniform centre-of-mass 
distribution but the molecules have their long molecular axes aligned along a specific 
direction labelled by a unit vector called a director. The orientational order survives 
the nematic to smectic A phase transition; the director is perpendicular to the smectic 
layers in the smectic A phase. 

Microscopic theory (McMillan 1971, Lee et a1 1973) has indicated that this phase 
transition could be of second order when the reduced temperature TNs/ TxI  (the ratio 
of nematic-smectic A to nematic-isotropic transition temperature) is small enough, 
i.e. when the nematic ordering is nearly saturated at TNs. The centre-of-mass density 
is periodic in the direction perpendicular to the smectic layers in the smectic A phase. 
It can, therefore, be expanded in a Fourier series of wavevector Q = 27r/L, where L is 
the interlayer distance, whose first Fourier coefficient is proposed to be a smectic A 
order parameter. Thus defined the smectic A order parameter is complex having both 
amplitude and phase. Traditional, heuristic reasoning (de Gennes 1972, Brochard 
1973, 1976, Jahnig and Brochard 1974) would then say that the critical exponents for 
the smectic A-nematic transition should be the same as those for superfluid 4He which 
also has a complex order parameter. Indeed there is a strong analogy between them 
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regarding some physical features, but it is another problem whether or not the smectic 
A exhibits critical behaviour which is similar to that in superfluid helium. In fact, 
experimental observations are rather incompatible concerning the value of the critical 
exponents (see, for example, Chandrasekhar 1977). 

The purpose of this paper is to investigate the effect of non-linear coupling among 
the critical fluctuations upon critical dynamical behaviour within the framework of 
Kawasaki’s (extended) mode-mode coupling theory (Kawasaki 1976). If the tran- 
sition should be helium-like at all, the mode-coupling mechanism would inevitably 
exert great influence upon critical dynamics of the smectic A phase. Our conclusion is 
that the mode coupling does not seriously affect critical dynamics indicating 
adequateness of a mean-field picture. This paper is divided into five sections of which 
this is the first. In 0 2, after a brief summary of Kawasaki’s formulation of constructing 
a kinetic equation, a proper set of dynamical variables called gross variables that enter 
the kinetic equation for the smectic A mesophase is determined. In 9: 3 the kinetic 
equations for these gross variables are derived. Applying Kawasaki’s method to the 
kinetic equations obtained, 0 4 discusses the renormalisation of the decay rate of 
critical fluctuations. This treatment indicates we have no mode coupling that seriously 
affects critical dynamics in the critical region. A few comments about the present 
approach are made in § 5 .  

2. Dynamical gross variables 

2.1. Review of formulation 

This subsection gives a brief summary of the mutilated kinetic equations for gross 
variables presented by Kawasaki (1976). 

We denote a gross variable by ai, and the corresponding phase function Ai, where j 
specifies wavevector as well as the type of the variable. If we retain only up to 
quadratic terms in the a’s in the kinetic equation, the kinetic equation for ai( t )  is 
written as 

where {4‘;} is the bare damping matrix, and fi a random force acting on ai. 

Vjfm are given by 
Here the first-moment frequency matrix {coir} and the mode-coupling coefficient 

oil = -ikBT([Aj, A:])/xL (2.2) 

respectively, with (A,) = 0 and (A,A:) = 6,ix,; [X, Y] denotes the Poisson bracket of 
two phase functions X and Y, (. . .) the equilibrium ensemble average. 

The kinetic equation (2.1) is only valid over time scales which are much greater 
than microscopic times that characterise rapid molecular random processes. 

2.2. Gross variables for the smectic A 

De Gennes (1972, 1973) proposed that the order parameter for a smectic A phase be  
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defined by a density wave along a constant direction which we take to be the z 
direction (perpendicular to the smectic layers), i.e. 

p ( r ) -  po+Re[9(r)exp(iQz)].  (2.4) 

Here L =  27r/Q is the smectic layer spacing and $(r)=&(r)exp[-iQu,(r)] is a 
complex smectic A order parameter; U, represents a displacement of the layer in the z 
direction, and in the smectic A phase ($0) = Goo # 0. 

W e  choose phase functions corresponding to the A,'s to be Fourier components of 
the two-component smectic A order parameter or its magnitude t + b ~ ( k )  and its phase, 
i.e. the displacement u,(k) of the smectic layer, and dilatation e ( k ) ,  and the local 
velocity u ( k )  giving the flow of matter, which are defined by 

~ ( k ) =  v-"* J d r  e - ik ' rO(r )  ( 2 . 5 )  

with O ( r ) =  $u(r) ,  u z ( r ) ,  e ( r )  or u ( r ) ,  and V being volume of the system. Here  

( 2 . 6 ~ )  

(2.6b)C 

and 

u ( r ) =  d P ( 4 ,  ( 2 . 6 ~ )  

with p ( r )  being the local momentum density. 
In the smectic A phase, the broken symmetry is translational, i.e. a small trans- 

lation along the normal to the layers produces a different, but equivalent, state of the 
system; U, is a symmetry-breaking variable while U, is a symmetry-restoring variable. 
Coupling of the symmetry-breaking variable to the flow is known to give rise to  a so 
called second-sound mode (de Gennes 1969, Martin et a1 1972, Jahnig 1975). W e  
shall simply neglect thermal variables. The  orientational displacements of molecules, 
that is, the director fluctuations, are also ignored, which means we assume orien- 
tational order has been saturated at T =e TNs. 

In the next subsection we will determine the linear combination of the gross 
variables U,, 6, U which is an eigenfunction of the second-sound mode (to be referred 
to as ESSM), to which we couple the amplitude of the order parameter, +Q. 

2.3. Second-sound mode$ 

To construct ESSM we first have to know a frequency matrix (1.2) in the restricted 
phase space spanned by the gross variables U,, 6 and U. Let us start from the 
orthogonalised set of gross variables {u,(k), 8(k), ujk)}, where 

with 

x ( k ) =  P( iu , (k ) I * )  and ,yuO(k)= P ( u z ( k ) 6 ( - k ) )  = -xuB( - -k ) ,  
P / k s  being temperature. 

+ T h e  second term represents the transverse dilatation and should he regarded as  a definition of the 
transverse displacement of the  layer. 

T h e  author  owes this par t  to Professor Kauasaki 'c unpublished note .  
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Poisson brackets for these variables are given in appendix 1; making use of these 
yields the frequency matrix of the form 

Here: 

and we have used the relation p ( ~ ~ ( q ) t ' ~ ( - q ) ) = p O ~  Sap. We should note that the first 
row of the above matrix w represents a permeation process (Helflich 1969, Martin et 
a1 1972, Jahnig 1975) of molecules through the smectic layers: du,/dt  = U =  +dis- 
sipative terms. 

Now we can readily obtain the secular equation for iw: 

(2.10) 

2 2 2  with q1 = q  -q2 .  
Equation (2.10) gives three eigenmodes of different type, one of which is a damped 

hydrodynamic shear mode w = w3 = 0; the others are w = i w , ( q ) =  is,(G)q ( j  = 1, 2 ) ,  
where the velocities s, are roots of the equation 

with tz  = qz/q and GL = ql/q. 
If, in equation (2.1 l), we adopt the expressions for the mean-square fluctuations: 

X - l ( q )  = Bql,  x i ' ( q ) = A  and x;e'(q)=ABq,/iC (2.12) 

with elastic constantsf A ,  B, C, and = B - C 2 / A  > 0, which are given by the fatniliar 
free energy of deformation due to de Gennes (1969), we will find the well known 
equation (de Gennes 1969, Martin et a1 1972, Jahnig 1975): 

+ B  COS' + ) + A B  s in2+  COS' 4 = o (2.13) 

with 4 being the angle between q and z axis. Here we have put a = 1 +CIA = 1, since 
A >> C (Liao et a1 1973). Thus we see equation (2.1 1) gives what are called the first- 
and the second-sound modes (wl and w z ) .  

t The elastic constants A ,  B, and C are related to the usual elastic moduli C,, by A = Cil ,  B = 
C33+Cll-2C13 and C=CI1-C13. 
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Then it is straightforward to obtain the eigenvector (A:(q),  A!(q) ,  A t ( q ) ,  A!(q) ,  
A3(q) ) ,  corresponding to the eigenmodes (wl(q) ,  - w l ( q ) ,  w*(q ) ,  -w2(4 ) ,  w3(q)) ,  of the 
form 

where parameters a,, b,, c,, d,, and e ,  ( m  = 1, 2 ,  3 )  are to be djxined. 
A t  this point we shall note the fact that the first-sound velocity is finite at T N S ;  this 

mode remains at high frequency and is not expected to have any serious influence on 
critical behaviour if attention is confined to phenomena occurring in the frequency 
range w << s25-' (5, characteristic correlation length). This, as well as the experiment- 
ally verified (plausible) relation (Liao er al 1973) A >> B (which also means w1 >> U * ) ,  

allow us to take the limit of a weak coupling between the first- and the second-sounds. 
Hence, we might take only ESSM, i.e. A i ( q ) ,  as our  dynamical gross variable. The  
normalised ESSM, A*(q)= A i ( 4 ) ,  are given after some manipulations by 

and satisfy the relations 

where A ( q )  is a generalised Kronecker delta: A(q) = 1 for q = 0, = 0 otherwise. 

3. Kinetic equation 

W e  can now set up the kinetic equations for an orthogonal set of gross variables 
{i,bo(q), A,(4),  A-(q)}  in the smectic A phase according to the prescription described 
in Q 2.1. 

Poisson brackets given in appendix 1 yield the frequency matrix 

where w i ( q )  is the unrenormalised second-sound frequency, and w i ( q )  = Bq l̂q ,̂q i f  
the relations (2.12) were used. 

Let us now turn to the mode-coupling coefficients -Vj1,, namely, 

vi,,,, = vG( j lm  + yNG( jlm ), 
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(3.3a) 

and 

iVC(A+(q)A+(k)A+(q - k ) ) =  -i(8poV)-’’2qV(qr k ) =  -iVG(A-(q)A-(k)A-(q - k ) ) ,  

where 

(3.36) 

We have not written down VG(AAA) explicitly since this term can be neglected as 
we shall see later; suffice it to say that V(q, k )  takes the asymptotic form V(q, k ) +  
Q(4, k )  as q / k  + 0. 

As to the non-Gaussian corrections VNG, only the modes +$A, AA$, AAA 
participate in the (three-) mode coupling through a selection rule of the mode 
coupling arising from the time-reversal symmetry (Kawasaki 1976). However, 
VNG($$A), VNG($A$) and SrNG(4AA) vanish since ([$, $*I) = ([$, A*]) = 0. Also 
YNG(A$$), VNG(AA$) and VNG(A$A) are negligible, because VNG(AA$)a 
(A(q)A*(k)$z(q - k ) )  --- (a( iA(q) i2) /ap) , ( isp(k) /2)  = 0 which follows from the formula 
(Schofield 1966): 

Y Z  

Y L  
z(x, Y ) = x z Y l - - ( x L  .Yl) and X1(q)=P(l$CJ(q)12)* 

where Sp is a density fluctuation, and similarly for YNG(A$A) and VNG(AII/$). Still 
more we simply assume VNG(AAA)< VG(AAA). Hence, we may put V =  VG. 

Then we can easily get the kinetic equation from (2.1). Namely, 

n 
$0 (4 ) = -Yo(q )4Q (4 - i(8p0 V)-’I2q 1’ (2 (8 ,q  - k )GO (k  )A +(q - k 

k 

(3.56) 

Since A*,(q) = A-(q), the equation for A-(q) is redundant. In equation (3 .5) ,  y o ( q )  
and q2Do(q) are bare Onsager kinetic coefficients, and If’, f A }  are random forces left 
out of (9, A}; in the sum Xi, k is restricted to be much smaller than the inverse 
microscopic distance (E A-’). 
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4. Renormalisation and critical dimensionality 

Having obtained the kinetic equation, the next task is to deduce from it macroscopic 
behaviour near the critical point expressed in rather a general language. The  time 
correlation functions seem to be most suitable for this purpose. 

First we review briefly Kawasaki’s formulation of time correlation functions 
(Kawasaki 1976). To solve the kinetic equations for gross variables and  to determine 
behaviour of the set of time correlation functions, perturbation and renormalisation 
techniques a re  introduced. This method allows us to obtain a self-consistent set of 
equations for the time correlation functions of gross variables defined by 

W e  find, ignoring vertex corrections, 

with the memory kernel: 

1 
Z j l ( t )  = 1 1 X” ~ i m m ~ , * m ~ n , G m m ~ ( t ) G n n ~ ( t ) ,  

mn m ’ n ’  X I  

( 4 . 2 ~ )  

(4.2b) 

0 where ks&xl = Sj1y j ,  and we put wjl = Sjlwp. 
If we are allowed to make the Markoffian approximation to (4.2),  equation ( 4 . 2 ~ )  

reduces to the equation that determines the renormalised transport coeficients self- 
consistently. In particular, if a representation 

Gjl(t) = Sjl exp[(iw, - ~ j > t ]  (4.3) 
is used, we obtain 

(4.4) 

which is what we observe in macroscopic measurements. 
W e  apply the foregoing general theory to the smectic A phase discussed in S: 3 .  We 

consider the following two types of propagators, one  for amplitude of the smectic A 
order parameter denoted by C,(t), and another for ESSM, G,(t), defined by 

c,(t)=P(cLo(Q> t)4T;,(q90)) = exp(-y(q)t), (4 .5a)  

G,(t)= P ( A + h  t )AT(4 ,  0)) = exp[(iw2(q)-q2D(q))r1. (4.5b) 
W e  arrive at the following coupled set of equations which corresponds to equation 
(4.4): 

( 4 . 6 ~ )  

(4.6b) 
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where ( , . , ) is the same as the term in the large parentheses of equation (4.66). To 
obtain this result the sum over k has been converted into a generalised d-dimensional 
integral with the upper cut-off A. 

It is not possible to find an analytic solution to these equations. Yet when we 
restrict ourselves to the extreme critical regime (45 >> l), or  more strictly T = T N S ,  

equation (4.6) gives us the critical dimensionality d, such that for the spatial dimen- 
sionality d > d,, the mode-coupling contribution to  the transport coefficients can be 
neglected, i.e. the conventional theory holds. We  proceed based on the following set 
of approximations (Gunton and Kawasaki 1975, Kawasaki and Gunton 1977). First, 
we may neglect any dependence on w 2  in equation (4.6). Secondly, at T = TNs 
wavenumbers k much greater than q give the major contribution to the second terms 
of equation (4.6); we thus take the q + 0 limit in the integrand and introduce a lower 
cut-off (= c q )  which is proportional to 4 .  Thus we get 

(4.7a) 

(4.7b) 

Here d and 8 represent anisotropic factors, the explicit forms of which x n o t  
necessary for our present purpose. To obtain this result we put z(&,  d ) =  z ( q  - k, 4) 
for 4 /k  << 1 and y ( q )  = 42r (q ) .  

W e  now adopt the anisotropic Ornstein-Zernike form for x# (Conrad er a1 1977): 

where 511 and l1 are the longitudinal and transverse correlation lengths, respectively, 
~ ~ ( 0 )  being the susceptibility. Then it is not difficult to see that for d > d , = 2  the 
mode-coupling contribution to T(D), or  ST(SD), is negligible (even if we included the 
so far neglected term ?"(AAA)), so that conventional theory is valid. In fact, 
ST(SD)-constant X 4 d - 2 ,  and we have no mode coupling in the small-q limit that 
seriously affects critical dynamics in the real smectic A phase. 

5. Concluding remarks 

W e  have investigated dynamics of critical fluctuations of a smectic A liquid crystal 
with a saturated nematic ordering near a second-order (or nearly second-order) 
smectic A-nematic transition. 

First, the kinetic equations obeyed by critical fluctuations in the smectic A meso- 
phase below TNS have been derived using Kawasaki's formulation of the mode-mode 
coupling theory (the extended mode-coupling theory). The  kinetic equations are then 
used to obtain self-consistent closed equations to  determine renormalisation of the 
characteristic frequency (decay rate) of critical fluctuations. In particular in the critical 
regime, we have found non-linear mode coupling among critical fluctuations does not 
lead to serious renormalisation of their decay rates. Thus we might conclude that the 
mean-field theory is a very good approximation for the smectic A to nematic tran- 
sition. Accordingly the smectic A liquid crystal has resemblance to an easy-axis 
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antiferromagnet rather than to an  isotropic antiferromagnet which has a close parallel 
with liquid helium near its A transition; the point is that anisotropy alters critical 
behaviour drastically. In this respect an  impetuous analogy between the smectic A 
and superfluid 4He is superficial, at least as to its critical behaviour, although such a 
helium-type picture provides us with a fruitful insight into the physical properties of 
the smectic A outside the critical region (de Gennes 1974). 

O n  the other hand, it should be emphasised that we have restricted ourselves to 
terms up to quadratic in critical fluctuation in the kinetic equation and that after such a 
special simplification the renormalisation technique has been applied. This notorious 
simplification remains an open question here too. Another problem pertinent t o  the 
mode-coupling theory is the assumption that gross variables we have taken to describe 
critical fluctuations in the smectic A form a complete set. Modification of critical 
dynamics through inclusion of additional variables such as energy density will be 
explained in the future. 

We  hope that experimental observations of pretransitional phenomena would 
enter fully into the critical region to confirm the prediction made here. 
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Appendix 1. Poisson brackets of gross variables 

In this appendix we calculate Poisson brackets of our  dynamical gross variables. 
First, we write down the molecular expressions for them: 

p ( r )  = c m"S(r - f a ) ,  
OL 

u,(r) = p i ' p j ( r ) ,  p j ( r ) = C  P P S ( ~ - ~ " ) ,  j = x, y ,  z. 
(I 

Here  Goo = (GO), Q = 27r/L, and we assume IQu,l<< 1; mu,  p a  and U" are, respectively, 
mass, local momentum and displacive degrees of freedom of the a t h  molecule at the 
point re .  Here and in the following we shall always concentrate on fluctuations with 
long wavelengths ( k  << Q) and ignore the short wavelength quantities of the order of 
kL. By a straightforward evaluation we find non-vanishing Poisson-bracket relations 



2054 Y Shiwa 

Appendix 2. Mode-coupling coefficients 

This appendix is devoted to the calculation of the mode-coupling coefficients VG 
defined in (3.2). 

The  first three of ( 3 . 3 ~ )  can be obtained by a simple application of (3.2) with 
(A1.3). To get V G ( A A A )  we proceed as follows. Although ( A 1 . 2 ~ )  is more involved 
to use, the following consideration helps to simplify it. Take  two variables X ( k )  and 
Y(k)  which are Fourier transforms of local density variables X ( r >  and Y(r). Then  
(Kawasaki 1976) 

[ X ( k ) ,  Y(k’)l= [ X ( k + q ) ,  Y(k’-q)I+O(qro), (A2.1) 

if the range of interaction, ro,  is short enough compared with k-’ and k ‘ - ’ .  
Consequently, if q is an arbitrary wavevector with q r o c  1, we have 

(A2.2) IX(k), Y(k” = [ X ( k  + q ) ,  Y ( k ’ - q ) l .  

Using this approximation, we obtain 

(A2.3) 

apart from the term including A(q + k) which turns out not to contribute to Y. Then 
we find, after a straightforward but lengthy calculation, that Y G ( A A A )  takes the form 
given in ( 3 . 3 ~ ) .  

1 /2  -1 [&z), v a ( k ) l = - i ~ o v  ) q u 8 ( q + k )  
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